SIDDHARTH INSTITUTE OF ENGINEERING & TECHNNOLOGY :: PUTTUR

Siddharth Nagar, Narayanavanam Road – 517583

QUESTION BANK (DESCRIPTIVE)

Subject With
Code:FEM IN STRUCTURAL
ENGINEERING(20CE1005)

Course & Branch:

Year & Sem:

M.TECH-STRUCTURAL ENGINEERING I M.Tech & II SEM

Regulation: R20

INTRODUCTION AND PRINCIPLES OF ELASTICITY

UNIT –I

1.	Exp	plain the different steps involved in FEM	[L1][CO1]	[6M]
2.	a)	What are the merits, demerits and limitations of Finite Element Methods?	[L1][CO1]	[6M]
	b)	Explain in detail finite element method procedure with an example.	[L2][CO1]	[6M]
3.	Wh ene	at is potential energy? State and explain the principle of minimum potential rgy	[L2][CO2]	[6M]
4.	Usi	ng Rayleigh – Ritz method determine the expression for maximum	[L3][CO2]	[12M]
	disj end	Also, compare it with the standard expression.		
5.	Usi	ng Rayleigh-Ritz method determine the expression for deflection and B.M in	[L3][CO2]	[12M]
	a S	SB Subjected to UDL over entire span. Find the deflection and moment at		
	mic	I span and Compare with exact solution.		
6.	Dra	w a typical three-dimensional element and indicate state of stress in their	[L2][CO2]	[12 M]
	pos	itive Sense and also derive the equations of equilibrium in case of a 3-D		
	stre	ess system.		
7.	Αt	eam AB of span L simply supported at ends and carrying a concentrated load	[L2][CO2]	[12 M]
	W	at the Centre C .Determine the deflection At mid span by using Rayleigh-Ritz		
	method and compare with exact solution.			
8.	a)	Explain plane stress problem and plane strain problems.	[L2][CO1]	[6M]
	b)	Explain axi-symmetric problem.	[L1][CO1]	[6M]
9.	a)	Explain discretization and classification of discretization.	[L2][CO1]	[6M]
	b)	Explain nodes at discontinuities.	[L1][CO1]	[6M]
10	Αł	par of uniform cross section is clamped at one end and left free at other end	[L3][CO2]	[12 M]
	and free at End is Subjected to a uniform axial load P. Calculate the			
	displacement and stress in a bar by Using two terms polynomial and 3 terms			
	polynomial. Compare with exact solution			
L	1		l	

<u>UNIT-II</u>

ONE-DIMĒNSIONAL FEM

1.	Derive Stiffness matrix for 1D – two noded linear bar element.	[L2][CO3]	[12M]
2.	A 2 Noded truss element having the nodal displacement are $u_1=5mm$ and $u_2=8mm$ at the ends. Calculate the displacement at $x=L/4$, $L/3$ and $L/2$.	[L3][CO3]	[12M]
3.	Determine the nodal displacements at node 2, stresses in each material and element stiffness matrix for each element as shown in Fig., due to applied force $P = 400 \times 10^{3}$ N. $A_{1} = 2400 \text{ mm}^{2}$ & $A_{2} = 1200 \text{ mm}^{2}$ $L_{1} = 300 \text{ mm}$ & $L_{2} = 400 \text{ mm}$ $E_{1} = 0.7 \times 10^{5} \text{ N/mm}^{2}$ & $E_{2} = 2 \times 10^{5} \text{ N/mm}^{2}$	[L3][CO3]	[12M]
4.	Briefly explain shape function and derive shape function for 1D – two noded line element.	[L2][CO3]	[12M]
5.	Briefly explain shape function and derive shape function for 1D – three noded line element.	[L2][CO3]	[12M]
6.	Derive of the displacement function(u) and shape function (N) for 1-D linear bar element based on global coordinate approach.	[L3][CO3]	[12M]
7.	Derive the shape function, strain displacement matrix element stiffness matrix for a two noded 1-D Element.	[L3][CO 3]	[12M]
8.	A 1-D 3 noded bar element at X_1 =20mm at first node, X=24mm at middle node and X_2 =36mm.Calculate the following shape function N_1 and N_2 at the middle point P.if u_1 =3mm and u_2 =-5, calculate the displacement u at point P.	[L3][CO3]	[12M]
9.	A 2 Noded truss element having the nodal displacement are u_1 =6mm and u_2 =9mm at the ends. Calculate the displacement at x=L/4,L/3 and L/2.	[L3][CO3]	[12M]
10.	What is static condensation? Explain procedure of static condensation	[L2][CO3]	[12M]

R20

<u>UNIT III</u>

TWO DIMENSIONAL FEM

	Derive matrix equation for 2-D element		[12M]
1.			
2.	a) Differentiate between CST and LST elements	[L2][CO4]	[6M]
	b) Evaluate the shape functions N_1 , N_2 and N_3 at the interior point P	[L3][CO4]	[6M]
	for the triangular element shown in the figure below.		
	(3.5) (3.5) (3.5) (0.6) (6.0) x		
3.	Derive shape functions for four noded rectangular elements. Use natural co-	[L3][CO4]	[12M]
4	ordinate system	FL 11[CO 4]	[10]
4.	write and briefly explain the different types of elements for plain stress and	[L1][C04]	
5	Derive the shape function for the Constant strain triangle element (CST)	[I_3][CO4]	[12M]
5.	element.		[121/1]
6.	Derive the strain-displacement matrix for CST element.	[L1][CO4]	[12M]
7.	Explain about	[L1][CO4]	[12M]
	a) Geometric in variance		
	b)Convergent and compatibility requirements		
8.	Derive the shape function and strain-displacement for an rectangular 4-	[L3][CO4]	[12M]
	noded element.		
9.	Write down the following?	[L1][CO4]	[12M]
	1. Global coordinate system		
	2. Local coordinate system		
	3. Natural coordinate system		
10	4. Discretization		[10] []
10	Derive the Shape functions for the 3-hoded triangle element (or) L.D.1 (or)	[L2][C04]	
	0.3.1.		

<u>UNIT –IV</u>

ISOPARAMETRIC FORMULATION & AXI-SYMMETRIC ANALYSIS

1.	Explain the isoparametric concept in finite element analysis.	[L1][CO6]	[12M]
2.	Explain the terms isoparametric, sub parametric and super parametric elements.	[L1][CO6]	[12M]
3.	Derive the Jaccobian matrix for 4-noded rectangular element.	[L2][CO6]	[12M]
4.	Explain the formulation of 4-noded 2-D isoparametric quadrilateral element. Derive the straindisplacement matrix and stiffness matrix.	[L3][CO6]	[12M]
5.	Derive the shape function for 4-Noded isoparametric quadrilateral element.	[L2][CO6]	[12M]
6.	Derive the strain-displacement matrix for 4-Noded isoparametric quadrilateral element.	[L2][CO6]	[12M]
7	Derive the shape function for 8-Noded isoparametric quadrilateral element.	[L2][CO6]	[12M]
8	Explain the lagrangian and serendipity elements.	[L1][CO6]	[12M]
9	Derive the shape function for Axisymmetric (Rectangular) element.	[L2][CO6]	[12M]
10.	Explain the axi symmetric analysis and axi-symmetrical formulation	[L2][CO6]	[12M]

R20

<u>UNIT V</u> THREE - DIMENSIONAL FEM

1.	Explain the basic theory of plate bending.	[L1][CO7]	[12M]
2.	Explain the basic relationships in plate bending theory.	[L2][CO7]	[12M]
3.	Explain about different types of 3-D solid elements.	[L1][CO7]	[12M]
4.	Explain about Hexahedral Isoparametric elements.	[L2][CO7]	[12M]
5.	What are the three dimensional stresses and strains explain the relation between them	[L1][CO7]	[12M]
6.	Write the stiffness matrix for a hexahedral element.	[L2][CO7]	[12M]
7.	Explain basic relations in thin plate theory.	[L1][CO7]	[12M]
8.	Briefly explain about Mindlin's approximations.	[L3][CO7]	[12M]
9.	Explain finite element formulation for 8-noded Isoparametric solid element	[L2][CO7]	[12M]
10.	Explain stress resultants in thin plates.	[L2][CO7]	[12M]

Prepared by

K. ASHA LATHA

Ass Professor/CE

R20